Exercise 4.1 : Solutions of Questions on Page Number : 60
Q1:
Construct the following quadrilaterals.
(i) Quadrilateral ABCD
$A B=4.5 \mathrm{~cm}$
$B C=5.5 \mathrm{~cm}$
$C D=4 \mathrm{~cm}$
$A D=6 \mathrm{~cm}$
$A C=7 \mathrm{~cm}$
(ii) Quadrilateral JUMP
$\mathrm{JU}=3.5 \mathrm{~cm}$
$\mathrm{UM}=4 \mathrm{~cm}$
$M P=5 \mathrm{~cm}$
$\mathrm{PJ}=4.5 \mathrm{~cm}$
$\mathrm{PU}=6.5 \mathrm{~cm}$
(iii) Parallelogram MORE
$\mathrm{OR}=6 \mathrm{~cm}$
$R E=4.5 \mathrm{~cm}$
$E O=7.5 \mathrm{~cm}$
(iv) Rhombus BEST
$B E=4.5 \mathrm{~cm}$
$\mathrm{ET}=6 \mathrm{~cm}$

Answer:

(i) Firstly, a rough sketch of this quadrilateral can be drawn as follows.

(1) $\triangle A B C$ can be constructed by using the given measurements as follows.

(2) Vertex D is 6 cm away from vertex A. Therefore, while taking A as centre, draw an arc of radius 6 cm .

(3) Taking C as centre, draw an arc of radius 4 cm , cutting the previous arc at point D. Join D to A and C .

$A B C D$ is the required quadrilateral.
(ii)Firstly, a rough sketch of this quadrilateral can be drawn as follows.

(1) Δ JUP can be constructed by using the given measurements as follows.

(2) Vertex M is 5 cm away from vertex P and 4 cm away from vertex U. Taking P and U as centres, draw arcs of radii 5 cm and 4 cm respectively. Let the point of intersection be M .

$\underset{\text { м }}{\text { 又 }}$
(3) Join M to P and U.

JUMP is the required quadrilateral.
(iii)We know that opposite sides of a parallelogram are equal in length and also these are parallel to each other.

Hence, $\mathrm{ME}=\mathrm{OR}, \mathrm{MO}=\mathrm{ER}$

A rough sketch of this parallelogram can be drawn as follows.

(1) Δ EOR can be constructed by using the given measurements as follows.

(2) Vertex M is 4.5 cm away from vertex O and 6 cm away from vertex E. Therefore, while taking O and E as centres, draw arcs of 4.5 cm radius and 6 cm radius respectively. These will intersect each other at point M.

(3) Join M to O and E .

MORE is the required parallelogram.
(iv)We know that all sides of a rhombus are of the same measure.

Hence, $\mathrm{BE}=\mathrm{ES}=\mathrm{ST}=\mathrm{TB}$
A rough sketch of this rhombus can be drawn as follows.

(1) Δ BET can be constructed by using the given measurements as follows.

(2) Vertex S is 4.5 cm away from vertex E and also from vertex T . Therefore, while taking E and T as centres, draw arcs of 4.5 cm radius, which will be intersecting each other at point S .

Exercise 4.2 : Solutions of Questions on Page Number : 62
Q1 :
Construct the following quadrilaterals.
(i) Quadrilateral LIFT
$\mathrm{LI}=4 \mathrm{~cm}$
$\mathrm{IF}=3 \mathrm{~cm}$
$\mathrm{TL}=2.5 \mathrm{~cm}$
$\mathrm{LF}=4.5 \mathrm{~cm}$
$\mathrm{IT}=4 \mathrm{~cm}$
(ii) Quadrilateral GOLD
$\mathrm{OL}=7.5 \mathrm{~cm}$
$\mathrm{GL}=6 \mathrm{~cm}$
$\mathrm{GD}=6 \mathrm{~cm}$
$\mathrm{LD}=5 \mathrm{~cm}$
$\mathrm{OD}=10 \mathrm{~cm}$
(iii) Rhombus BEND
$\mathrm{BN}=5.6 \mathrm{~cm}$
$\mathrm{DE}=6.5 \mathrm{~cm}$

Answer :
(i) A rough sketch of this quadrilateral can be drawn as follows.

(1) Δ ITL can be constructed by using the given measurements as follows.

(2) Vertex F is 4.5 cm away from vertex L and 3 cm away from vertex I . Therefore, while taking L and I as centres, draw arcs of 4.5 cm radius and 3 cm radius respectively, which will be intersecting each other at point F.

(3) Join F to T and F to I.

LIFT is the required quadrilateral.
(ii)A rough sketch of this quadrilateral can be drawn as follows.

(1) Δ GDL can be constructed by using the given measurements as follows.

(2) Vertex O is 10 cm away from vertex D and 7.5 cm away from vertex L . Therefore, while taking D and L as centres, draw arcs of 10 cm radius and 7.5 cm radius respectively. These will intersect each other at point O .
ox

(3) Join O to G and L.

GOLD is the required quadrilateral.
(iii) We know that the diagonals of a rhombus always bisect each other at 90․ Let us assume that these are intersecting each other at point O in this rhombus.

Hence, EO = OD = 3.25 cm
A rough sketch of this rhombus can be drawn as follows.

(1) Draw a line segment BN of 5.6 cm and also draw its perpendicular bisector. Let it intersect the line segment $B N$ at point O.

(2) Taking O as centre, draw arcs of 3.25 cm radius to intersect the perpendicular bisector at point D and E .

(3) Join points D and E to points B and N.

BEND is the required quadrilateral.
Exercise 4.3 : Solutions of Questions on Page Number : 64
Q1:

Construct the following quadrilaterals.
(i) Quadrilateral MORE

$$
\begin{aligned}
& M O=6 \mathrm{~cm} \\
& O R=4.5 \mathrm{~cm} \\
& \angle M=60^{\circ} \\
& \angle O=105^{\circ} \\
& \angle R=105^{\circ} \\
& \text { (ii) Quadrilateral PLAN } \\
& P L=4 \mathrm{~cm} \\
& \angle A=6.5 \mathrm{~cm} \\
& \angle P=90^{\circ} \\
& \angle A=110^{\circ}
\end{aligned}
$$

$\angle \mathrm{N}=85^{\circ}$
(iii) Parallelogram HEAR
$\mathrm{HE}=5 \mathrm{~cm}$
$E A=6 \mathrm{~cm}$
$\angle R=85^{\circ}$
(iv) Rectangle OKAY
$\mathrm{OK}=7 \mathrm{~cm}$
$K A=5 \mathrm{~cm}$

Answer :
(i)
(1)A rough sketch of this quadrilateral can be drawn as follows.

(2) Draw a line segment MO of 6 cm and an angle of 105o at point O . As vertex R is 4.5 cm away from the vertex 0 , cut a line segment $O R$ of 4.5 cm from this ray.

www.ncrtsolutions.in www.ncrtsolutions.com

(3) Again, draw an angle of 105o at point R.

(4) Draw an angle of 60o. at point M. Let this ray meet the previously drawn ray from R at point E.

MORE is the required quadrilateral.
(ii)
(1)The sum of the angles of a quadrilateral is 360°.

In quadrilateral PLAN, $\angle P+\angle L+\angle A+\angle N=360^{\circ}$
$90^{\circ}+\angle \mathrm{L}+110^{\circ}+85^{\circ}=360^{\circ}$
$285^{\circ}+\angle L=360^{\circ}$
$\angle L=360^{\circ}-285^{\circ}=75^{\circ}$
(2)A rough sketch of this quadrilateral is as follows.

(3) Draw a line segment PL of 4 cm and draw an angle of 750 at point L. As vertex A is 6.5 cm away from vertex L, cut a line segment $L A$ of 6.5 cm from this ray.

(4) Again draw an angle of 110° at point A .

(5) Draw an angle of 90 at point P. This ray will meet the previously drawn ray from A at point N .

PLAN is the required quadrilateral.
(iii)
(1)Firstly, a rough sketch of this quadrilateral is as follows.

www.ncrtsolutions.in www.ncrtsolutions.com

(2) Draw a line segment HE of 5 cm and an angle of 850 at point E . As vertex A is 6 cm away from vertex E, cut a line segment $E A$ of 6 cm from this ray.

(3) Vertex R is 6 cm and 5 cm away from vertex H and A respectively. By taking radius as 6 cm and 5 cm , draw arcs from point H and A respectively. These will be intersecting each other at point R.

4. Join R to H and A .

HEAR is the required quadrilateral.
(iv)
(1)A rough sketch of this quadrilateral is drawn as follows.

(2) Draw a line segment $O K$ of 7 cm and an angle of 900 at point K. As vertex A is 5 cm away from vertex K, cut a line segment $K A$ of 5 cm from this ray.

(3) Vertex Y is 5 cm and 7 cm away from vertex O a

Exercise 4.4 : Solutions of Questions on Page Number : 67
Q1:
Construct the following quadrilaterals,
(i) Quadrilateral DEAR

$$
\mathrm{DE}=4 \mathrm{~cm}
$$

$$
\mathrm{EA}=5 \mathrm{~cm}
$$

$$
\mathrm{AR}=4.5 \mathrm{~cm}
$$

$$
\angle \mathrm{E}=60^{\circ}
$$

$$
\angle A=90^{\circ}
$$

(ii) Quadrilateral TRUE
$T R=3.5 \mathrm{~cm}$

$$
\begin{aligned}
& R U=3 \mathrm{~cm} \\
& U E=4 \mathrm{~cm} \\
& \angle R=75^{\circ} \\
& \angle U=120^{\circ}
\end{aligned}
$$

Answer :

(i)
(1)A rough sketch of this quadrilateral can be drawn as follows.

(2) Draw a line segment DE of 4 cm and an angle of 60ㅇ at point E . As vertex A is 5 cm away from vertex E , cut a line segment EA of 5 cm from this ray.

(3) Again draw an angle of 900 at point A. As vertex R is 4.5 cm away from vertex A, cut a line segment RA of 4.5 cm from this ray.

(4) Join D to R.

DEAR is the required quadrilateral.
(ii)
(1)A rough sketch of this quadrilateral can be drawn as follows.

(2) Draw a line segment RU of 3 cm and an angle of 1200 at point U. As vertex E is 4 cm away from vertex U, cut a line segment UE of 4 cm
from this ray.

(3) Next, draw an angle of 750 at point R. As vertex T is 3.5 cm away from vertex R, cut a line segment RT of 3.5 cm from this ray.

(4) Join T to E.

TRUE is the required quadrilateral.
Exercise 4.5 : Solutions of Questions on Page Number : 68
Q1:
Draw the following:

The square READ with RE $=5.1 \mathrm{~cm}$

Answer :

All the sides of a square are of the same measure and also all the interior angles of a square are of $90 \bigcirc$ measure. Therefore, the given square READ can be drawn as follows.
(1)A rough sketch of this square READ can be drawn as follows.

(2) Draw a line segment RE of 5.1 cm and an angle of 90ㅇ at point R and E.

(3) As vertex A and D are 5.1 cm away from vertex E and R respectively, cut line segments EA and $R D$, each of 5.1 cm from these rays.

(4) Join D to A.

READ is the required square.
Q2 :

Draw the following:
A rhombus whose diagonals are 5.2 cm and 6.4 cm long.

Answer :

In a rhombus, diagonals bisect each other at 90 ㅇ. Therefore, the given rhombus ABCD can be drawn as follows.
(1)A rough sketch of this rhombus $A B C D$ is as follows.

(2) Draw a line segment $A C$ of 5.2 cm and draw its perpendicular bisector. Let it intersect the line segment AC at point O.

$\frac{6.4 \mathrm{~cm}}{2}=3.2 \mathrm{~cm}$
(3) Draw arcs of 2 on both sides of this perpendicular bisector. Let the arcs intersect the perpendicular bisector at point B and D.

(4) Join points B and D with points A and C.

$A B C D$ is the required rhombus.

Q3 :

Draw the following:
A rectangle with adjacent sides of length 5 cm and 4 cm .

Answer:

Opposite sides of a rectangle have their lengths of same measure and also, all the interior angles of a rectangle are of 900 measure. The given rectangle ABCD may be drawn as follows.
(1)A rough sketch of this rectangle $A B C D$ can be drawn as follows.

(2) Draw a line segment $A B$ of 5 cm and an angle of 90 at point A and B.

(3) As vertex C and D are 4 cm away from vertex B and A respectively, cut line segments $A D$ and $B C$, each of 4 cm , from these rays.

(4) Join D to C.

$A B C D$ is the required rectangle.
Q4:

Draw the following:
A parallelogram OKAY where $O K=5.5 \mathrm{~cm}$ and $K A=4.2 \mathrm{~cm}$.

Answer :

Opposite sides of a parallelogram are equal and parallel to each other. The given parallelogram OKAY can be drawn as follows.
(1)A rough sketch of this parallelogram OKAY is drawn as follows.

(2) Draw a line segment OK of 5.5 cm and a ray at point K at a convenient angle.

(3) Draw a ray at point O parallel to the ray at K. As the vertices, A and Y, are 4.2 cm away from the vertices K and O respectively, cut line segments $K A$ and $O Y$, each of 4.2 cm , from these rays.

(4) Join Y to A.

OKAY is the required parallelogram.

